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Abstract—Autonomous1,2 software, especially if it is based 
on model, can play an important role in future space 
applications. For example, it can help streamline ground 
operations, or, assist in autonomous rendezvous and 
docking operations, or even, help recover from problems 
(e.g., planners can be used to explore the space of recovery 
actions for a power subsystem and implement a solution 
without (or with minimal) human intervention). In general, 
the exploration capabilities of model-based systems give 
them great flexibility. Unfortunately, it also makes them 
unpredictable to our human eyes, both in terms of their 
execution and their verification. The traditional verification 
techniques are inadequate for these systems since they are 
mostly based on testing, which implies a very limited 
exploration of their behavioral space. In our work, we 
explore how advanced V&V techniques, such as static 
analysis, model checking, and compositional verification, 
can be used to gain trust in model-based systems. We also 
describe how synthesis can be used in the context of system 
reconfiguration and in the context of verification. 
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1. INTRODUCTION 

Autonomous software, especially if it is based on model, 
can play an important role in future space applications. For 
example, it can help streamline ground operations, or, assist 
in autonomous rendezvous and docking operations, or even, 
help recover from problems. Planners can be used to 
explore the space of recovery actions for a power subsystem 
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and implement a solution without (or with minimal) human 
intervention. In general, the exploration capabilities of 
model-based systems give them great flexibility. 
Unfortunately, it also makes them unpredictable to our 
human eyes, both in terms of their execution and their 
verification. The traditional verification techniques are 
inadequate for these systems since they are mostly based on 
testing, which implies a very limited exploration of their 
behavioral space. In our work, we explore how advanced 
V&V techniques, such as static analysis, model checking, 
and compositional verification, can be used to gain trust in 
model-based systems.  

Planning systems are made of two parts: the domain model 
describes the domain on which the planner can reason and 
the planning engine performs the reasoning (usually in the 
form of a systematic exploration of the state space induced 
by the planning goals and the domain model). These two 
parts yield different V&V challenges. On one hand, the 
planning engine can be verified in terms of its mechanisms, 
i.e., check that forward propagation is done correctly, check 
that constraints are elaborated correctly, and so on. We 
believe this can be done using automatic proving 
techniques. The use of these techniques comes with a high 
cost, but the planning engine only needs to be validated 
once. In some sense, it is a bit similar to validating a 
compiler. On the other hand, domain models change 
depending on the applications. This is where knowledge 
specific to a given problem is captured. Each new domain 
model needs to be validated. We focus on the verification of 
domain models for model-based systems and describe what 
type of properties can be checked on these models. We will 
also discuss how concepts used in static analysis, such as 
abstractions, can help decompose the verification process, 
hence, making it more scalable. Finally, we describe how 
model synthesis can help the verification process. 

2. AUTONOMOUS SYSTEM OVERVIEW 

The system under consideration follows a three-layered 
architecture. The top layer, also called the decision layer, 
consists of a domain model and a search engine. The 
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domain model lists the constraints that describe the 
relationships between elements of the system (which may 
include environmental constraints) and the flight rules that 
need to be followed during planning. The search engine 
does the actual planning, i.e., it elaborates and scheduled 
activities to meet a given goal under the constraints 
described in the domain model [12]. In our project, we rely 
on the EUROPA planning framework. The output of the 
decision layer is a plan. The middle layer, also called the 
executive, takes a plan and “executes” it by issuing 
commands to the controllers in the bottom layer, also called 
functional layer. The executive is responsible for issuing 
commands, checking that commands are actually executed, 
and responding to exception signals generated by the 
controllers. The functional layer is a collection of 
controllers that actually command the hardware devices of 
the physical system. This is the lowest level of an autonomy 
software system. In our project, we rely on the functional 
layer provided by the CLARAty project [15]. 
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Figure 1. Architecture of autonomous systems. 

The goal of our project is to provide a robust architecture. 
This means that we should be able to verify every 
component in autonomous systems built with our 
architecture. Moreover, we recognize that reconfiguration 
plays an important role at NASA. Therefore, our 
architecture needs to support reconfiguration, not only in 
terms of adding, removing, or changing components in the 
functional layer, but also in terms of adding planning and 
execution capabilities. This guarantees us that our system 
can be deployed in a variety of domains and that it can 
evolve with technology progress. As we will show in the 
next sections, taking into account reconfiguration actually 
helps the verification process. 

3. VERIFICATION FRAMEWORK 

From a V&V point of view, each element requires different 
techniques, even though some basic techniques (such as 
code analysis) can be applied across the board.  

In terms of deployment, there are degrees of autonomy. The 
current practice is to use planners on the ground (MER) and 
rely on rough command and data handling systems. 
Progressively, these technologies will become more and 
more ambitious and the migration of complex capabilities 
on board will depend on their trustworthiness. Trust is 
directly related to the number of possible scenarios that can 
safely be handled by an autonomous system. These 
scenarios define a safe operational envelope. Obviously, the 
goal is to verify the system for as large an envelope as 
possible. Current mission practices ensure safety by testing 
the system for a set of nominal scenarios and some off-
nominal scenarios. This process is costly and does not 
account much for variations to nominal scenarios. 
Moreover, it offers little coverage of the off-nominal 
scenarios. We are proposing to go beyond that by first 
relying on an advanced form of testing (e.g., runtime 
monitoring) to offer a measurable level of certification for 
all fault classes, and then, increasing trust by progressively 
replacing testing by advanced formal verification techniques 
(e.g., static analysis and model checking). This paper 
focuses on the practical application of these advanced 
techniques. 

The functional layer, containing the control software, is the 
closest to traditional embedded software systems. It mostly 
consists of control device drivers for actuators or sensors as 
well as mathematical and algorithmic libraries. For these 
elements, we are mostly concerned with certifying that they 
cannot crash (regardless of their inputs) and assessing their 
performance in terms of execution time and memory 
management. This suggests that a V&V approach based on 
embedded system verification can be applied in a 
straightforward manner. Note that it is possible that some 
elements related to planning or execution can find their way 
down to this layer; in which case, they are amenable to the 
same techniques used for the planner and the executive. 

In some high-level view, the executive and the planner are 
quite similar. Using a formal model (the domain model for 
the planner and a plan for the executive), a reasoning engine 
computes an output (a plan for the planner and low-level 
commands for the executive). The reasoning engine is 
usually fairly mechanical (mostly performing searches) and 
rarely changed (in theory, only the domain model changes 
for a new application). Therefore, we can afford to bring to 
bear some “heavy” V&V techniques (e.g., precise static 
analysis, theorem proving) to verify that the mechanical 
operation of the reasoning engine (e.g., graph expansion, 
constraint propagations, and rollbacks) are properly 
performed. For the domain model, we are concerned with 
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well-formedness (are constraints legal?), consistency (can 
constraints lead to inconsistent solutions or a deadlock?), 
and completeness (have we specified all necessary 
constraints?). Given the nature of the representation (i.e., 
constraints), it is natural to explore the possibility of using 
model checking to check these properties. However, model 
checking is not likely to scale better than search (planning) 
techniques; therefore, our emphasis will be on using proper 
abstractions (which have a relationship to plan graphs) and 
compositional techniques.  

As mentioned above, the engine requires checking for 
“mechanical” properties while models require some 
functional correctness verification. As shown in Figure 2, 
mechanical properties include programming errors (e.g., 
null pointer de-references), system-level errors (e.g., 
deadlocks and data races), and data manipulation errors 
(e.g., plan manipulation and constraint propagation). These 
properties are organized in a hierarchy that reflects the 
masking power of each fault class. For example, 
programming errors might mask synchronization errors, 
which in turn might mask data manipulation errors. This 
imposes a natural progression in the verification process: 
first, eliminate programming errors, then system-level 
errors, and finally, data manipulation errors. Once we have 
achieved a satisfying level of certification of “mechanical” 
properties, we can study performance of the engine (e.g., 
execution times and memory usage), which is important for 
on-board execution. Note that mechanical properties are 
checked only when the engine changes while functional 
properties are checked for each application (i.e., each new 
model). 
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Figure 2. Fault tree analysis for autonomous system. 

4. TRADITIONAL VERIFICATION 

As we mentioned in the previous section, programming and 
system-level errors can be present in all elements of an 
autonomous system. It is particularly relevant in the 
functional layer where components are very similar to 
traditional embedded software. However, it is also 
important in the context of planning and scheduling, even 
though it might be harder to analyze than functional 
elements. 

It is clear that our previous research on the verification of 
traditional embedded systems is directly relevant for 
programming and system-level errors. Therefore, we plan 
on using static analysis [4], model checking, and, some 
advanced form of testing. Static analysis is quite good at 
catching coding errors. Model checking is particularly good 
at catching system-level errors such as concurrency errors 
(deadlocks, data races, and so on). Advanced testing can 
offer several improvements over traditional testing. For 
example, we can automate the generation of input cases and 
test oracles using model checking techniques. In particular, 
we can use a form of symbolic execution to generate inputs 
for complex data types such as lists and graphs. This is quite 
interesting when it comes to testing a planner or an 
executive, which are all about manipulating graphs. 

The use of each of these techniques deserves a full paper. In 
the interest of space, we only describe an experiment in 
which we try to determine how useful static analysis can be 
on code implementing a planner. We first start by a brief 
introduction to static analysis. 

Static program analysis 

The goal of static analysis is to assess code properties 
without executing the code. Several techniques can be used 
to perform static analysis, such as theorem proving, data 
flow analysis [13], constraint solving [1], and abstract 
interpretation [5,6]. For this experiment, we use a tool, 
called PolySpace C++ Verifier [17], which is based on 
abstract interpretation. The theory of Abstract Interpretation 
pioneered by Patrick and Radhia Cousot in the mid 70's 
provides a formal framework for building program 
analyzers which can detect runtime errors by exploring the 
text of the program [5,6]. The fundamental result of 
Abstract Interpretation is that program analyzers obtained 
by following the framework are guaranteed to cover all 
possible execution paths.  

Runtime errors are errors that cause exceptions at runtime. 
Typically, in C, either they result in creating core files or 
they cause data corruption that may cause crashes. In this 
study we mostly looked for the following runtime errors: 

(1) Access to un-initialized variables (NIV) 

(2) Access to un-initialized pointers (NIP) 

(3) Out-of-bound array access (OBA) 

(4) Arithmetic underflow/overflow (OVF) 

(5) Invalid arithmetic operations (e.g., dividing by zero or 
taking the square root of a negative number) (IAO) 

(6) Non-terminating loops (NTL) 

(7) Non-terminating calls (NTC) 
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The price to pay for exhaustive coverage is incompleteness: 
the analyzer can raise false alarms on some operations that 
are actually safe. However, if the analyzer deems an 
operation safe, then this property holds for all possible 
execution paths. The program analyzer can also detect 
certain runtime errors which occur every time the execution 
reaches some point in the program. Therefore, a program 
analyzer can be used either as a debugger that detects 
runtime errors statically without executing the program or 
as a preprocessor that reduces the number of potentially 
dangerous operations that have to be checked by another 
validation process (code reviewing, test writing, and so on). 

PolySpace C++ Verifier is the first tool implementing 
Abstract Interpretation techniques that is able to scale up to 
software systems of industrial size. This tool takes an ISO-
compliant piece of C++ code and performs static analysis 
using sophisticated Abstract Interpretation algorithms. The 
result is the program in which all potentially dangerous 
operations have been assigned a color: 

Green the operation is safe, no runtime error can occur at 
this point 

Red a runtime error occurs whenever the operation is 
executed 

Black the operation is unreachable (dead code) 

Orange the operation is potentially dangerous (runtime 
error or false alarm). 

The goal of our experiment is to assess the selectivity of 
PolySpace C++ Verifier on C++ programs, especially those 
implementing our architectural framework. 

Example: static analysis of PLASMA’s temporal network 

We are analyzing parts of the PLASMA planning 
framework. The goal of this experiment is to assess the 
efficiency of static analysis techniques in verifying that 
planning code is free of runtime errors. This sounds like it 
should be a straightforward task; however, planning code 
uses quite a bit of dynamic data structures (graphs, 
constraints), which are usually hard to analyze with static 
analyzers. Indeed, static analysis does better on code whose 
behavior is known at compile time, which is not the case for 
a planner. We report on the lessons of this experiment. 

For this experience, we focused on the code implementing 
temporal networks, and in particular, we concentrated on 
classes implementing distance graphs. These graphs are 
routinely used during planning. The first lesson was learned 
when the analyzer performed a phase similar to the semantic 
analysis performed by compilers. Basically, at this stage, the 
analyzer parses the code, checks its type correctness, and, 
most importantly, checks its conformance to the C++ 
standards. Not unexpectedly, the analyzer was much stricter 

than the gcc compiler used to compile the code (even 
though the code compiles under gcc 4.0.0, which is close to 
implementing the complete C++ standards). This result 
usually puts off developers, who dismiss it thinking that the 
analyzer is overly picky. However, it actually shows that the 
code is not highly portable since it depends on 
idiosyncrasies of a particular compiler. In the absence of a 
compiler implementing the C++ standards, this can be 
mitigated by using several compilers (the idea being that 
each compiler might compensate the shortcomings of 
another one). 

In general, static program analyzers perform whole program 
analysis, meaning that they start their analysis from a main 
routine and they analyze the code based on the call graph 
rooted at the main. This simplifies the job since the main 
provides an environment that restricts the behavior of the 
code. However since we need to take into account the fact 
that the system may be reconfigured, we want to analyze the 
generic parts of the system (the planner, the executive) in a 
generic manner. Fortunately, the verifier offers the option of 
analyzing code one class at a time. The way it works is that 
the analyzer generates for each class a main that implement 
a universal environment. This allows us to obtain general 
results. However, general results are typically worse than 
contextual results (see next paragraph). This is acceptable if 
one can parameterize the results base don the shape of the 
inputs. For that, we need access to the generated main 
routines, which is actually not the case for the moment. So, 
the second big lesson is that to implement a truly 
compositional analysis we need to control the contextual 
information of the analysis.  

We now present the results obtained during analysis. First, 
we should remark that the analysis did not reveal any red 
errors. Therefore, either the code has no errors or the 
analysis has precision problems. We lean towards the latter 
explanation. A good indication of the imprecision of the 
analysis is given by the rate of oranges (recall that oranges 
might be errors or false positives). The rate varies from 50% 
to 13% of oranges depending on the type of the error. A rate 
of 50% is an awful result; however, it was obtained on the 
class of overflow errors which account for less than 2% of 
the checks performed by the analyzer. The class of error 
with a 13% rate represents close to 70% of the number of 
checks performed by the analyzer. So, overall, we end up 
with a total rate of less than 20% of oranges. This is high 
but not uncommon in static analysis. It shows that we need 
to do a better job at providing contextual information for the 
analysis. 

5. A COMPOSITIONAL APPROACH 

Our goal is to design a verification framework that can 
support reconfiguration. Therefore, we need a 
compositional approach to verification. This will also help 



 5

improve the salability of advanced verification techniques. 
In any case, it is interesting to remark that the verification 
property flow is different from the flow of decision. In the 
architecture, the planner sits at the top and makes system-
level decisions. In the verification process, the executive is 
at the top. As Figure 3 illustrates, the executive is a 
confluence point for all properties. 
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Figure 3. Flow of properties in autonomous system. 

Let us consider timing properties. For example, we may 
wish to establish that execution times fit within the timing 
constraints of the physical system. From a real-time point of 
view, the planner is delivering a service to the executive. 
The planner delivers a high-level plan that needs to be 
expanded by the executive. So, the execution time of 
planner (i.e., the search time) needs to be propagated to the 
executive so that the overall response time can be 
computed. This example can be extended to other 
properties, especially the ones expressing safety properties 
pertaining to the whole system. They naturally flow to the 
executive. This is where we really have a system-level view 
of what is happening during execution.  

For these reasons, we decided that the best place to 
demonstrate the use of our compositional framework is at 
the executive level. In the next two subsections, we first 
describe the assume-guarantee framework, which provides 
the theoretical basis for our compositional process, and 
second, an example of its application to a system for 
autonomous rendezvous and docking. 

The assume-guarantee framework 

Compositional verification decomposes the properties of a 
system into properties of its components, so that if each 
component satisfies its respective property, then so does the 
entire system. Components are thus model checked 
separately. It is often the case, however, that components 
only satisfy properties in specific contexts (also called 
environments). This has given rise to the assume-guarantee 
style of reasoning. 
 

Assume-guarantee reasoning [10,11,16] first checks 
whether a component M guarantees a property P, when it is 
part of a system that satisfies an assumption A. Intuitively, A 
characterizes all contexts in which the component is 
expected to operate correctly. To complete the proof, it 
must also be shown that the remaining components in the 
system (M's environment) satisfy A. This style of reasoning 
is captured by the following assume-guarantee rule. 

〈A〉 M1 〈P〉   (Premise 1) 
〈True〉 M2 〈A〉 (Premise 2) 

 

            〈True〉 M1 || M2 〈P〉 

Several frameworks have been proposed to support this 
style of reasoning. However, their practical impact has been 
limited because they require extensive human input in 
defining assumptions that are strong enough to eliminate 
false violations, but that also reflect appropriately the 
remaining system. 
 
Previous work at NASA Ames has contributed to two main 
approaches for automating assume-guarantee reasoning. 
The first approach [8] synthesizes the assumption that a 
component needs to make about its environment for a given 
property to be satisfied. The assumption produced is the 
weakest, that is, it restricts the environment no more and no 
less than is necessary for the component to satisfy the 
property. The automatic generation of weakest assumptions 
has direct application to the assume-guarantee proof. More 
specifically, it removes the burden of specifying 
assumptions manually thus automating this type of 
reasoning.  
 
The second approach provides a model checking framework 
for performing assume-guarantee reasoning using the above 
rule in an incremental and fully automatic fashion. To check 
that a system made up of two components M1 and M2 
satisfies a property P, the framework automatically learns 
and refines assumptions Ai for component M1 to satisfy the 
property, which it then tries to discharge on component M2. 
The framework uses an automata learning algorithm [2] to 
construct the assumptions for the compositional analysis of 
the models. 
 
A useful characteristic of this framework is that the 
generated assumptions are minimal; they strictly increase in 
size as the learning algorithm progresses, and grow no 
larger than the weakest assumption for M1 to satisfy P. 
Moreover, in our experience, the interfaces between 
components are small for well designed software. 
Therefore, assumptions are expected to be significantly 
smaller than the environment that they represent in the 
compositional rules, and the cost of assume-guarantee 
reasoning will be significantly smaller than monolithic 
(non-modular) model checking, both in terms of time and 
consumed memory. Recently, this framework has been 
extended to handle more assume-guarantee rules and more 
than two components [3]. 
 
The above techniques have been implemented in the LTSA 
model checking tool [14] and have been used in the 
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example described in the next section among other case 
studies [9]. These techniques are general; they rely on 
standard features of model checkers and could therefore 
easily be introduced in any model checking tool. 
 
Example: an autonomous rendezvous and docking system 

A safety critical capability for spacecrafts, also relevant to 
the CEV, is that of autonomous rendezvous and docking 
(ARD). Over the last few months, we have been studying 
ARD from a design perspective in order to understand the 
characteristics of such a system and to identify verification 
challenges that it poses. Based on (limited due to export 
control issues) input from existing ARD systems (for 
example, ISS) and from publications on such systems, we 
have created an LTSA model of an example such system. 
 
The model is essentially made up of two types of 
components: sensors that are used to estimate the absolute 
or relative position, velocity etc. of the spacecraft, and the 
modes that constitute a typical ARD system. The ARD 
software goes through the modes in a sequential manner, 
and exhibits different behavior in each of these, as its goals 
are different: for example, the spacecraft uses different 
sensors (GPS, StarPlanetTracker, InertialNavigation) before 
it approaches its docking target, but once it is in close 
proximity, it uses a docking sensor that provides 
information relative to the target. We have also modeled a 
component named OrbitalState, which takes readings from 
the sensors and returns to the ARD mode-related software 
whether there are good readings from enough sensors to 
have a good state estimation of the spacecraft for ARD. Our 
current version of the model is untimed, which means that 
our verification effort will not concentrate on timing issues. 
However, we have modeled the requirement that you may 
have limitations in the amount of time you may be in a 
specific mode, or within the ARD system. We performed 
this by including timers that may non-deterministically 
timeout, in which case the ARD software will need to take 
the appropriate measures.  
 
We have expressed a number of properties that are typically 
required from an ARD system. We have verified both local 
properties of modes and system level properties. We report 
here the results we obtained by applying learning-based 
compositional verification to check a property which states 
that: 
 
“if within CaptureApproachMode two of my sensors fail, it 
will not be possible to proceed to the next mode” 
 
We have expressed two variants of this property in the 
LTSA tool. We then decomposed the system in the 
following way. On the one hand, we included all the mode-
related components. Since these are mostly sequential, the 
composition is fairly small. On the other hand, we included 
the OrbitalState component with stubbed out sensors to 
make the model smaller. In checking these properties, 
monolithic model checking ran out of memory whereas 
compositional verification succeeded in proving the 

properties in less than 2 minutes with an assumption of 6 
states. 

6. RECONFIGURATION AND SYNTHESIS 

One of the original goals of this project is to provide an 
autonomy architecture that fits NASA’s vision for 
exploration. Autonomous systems might be deployed first 
on the Crew Exploration Vehicle, the Cargo Launch 
Vehicle, and then on the lunar, and eventually Mars, 
surface. Re-inventing autonomous systems for each 
deployment would be prohibitively costly to NASA. 
Therefore, we recognize from the start that we need to 
design not only for verification but also for reconfiguration. 
This will allow us to use the same design and verification 
techniques and to re-use components across deployments. 
Moreover, it gives us a convenient means to evolve these 
systems and keep pace with new technologies. 

Figure 4 illustrates the possibilities for reconfiguration in 
our architecture. First, the most obvious place for 
reconfiguration is the functional layer where the control 
software sits. For example, adding a camera to a rover will 
trigger a reconfiguration in which control software for the 
camera needs to be added to the functional layer. Generally, 
such changes trigger changes in both the executive and the 
planner. The domain model needs to be updated with the 
constraints specific to the new camera. We can also imagine 
that new reasoning capabilities (e.g., geometric reasoning) 
can be added to the planner. 
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Figure 4. Reconfiguration of autonomy systems. 

Reconfiguring autonomous systems is a complicated 
exercise. If the architecture is not adapted, it can trigger 
massive changes and result in high cost for the project. 
Therefore, the architecture needs to be designed for 
reconfiguration, which means that all aspects of the design 
need to take into account the possibility of reconfiguration. 
This is what we have done for verification; we have placed 
compositional verification at the heart of our verification 
process. Composition helps re-use verification artifacts in 
connection with new verification artifacts (for the added 
components) and efficiently put together the verification of 
the reconfigured system. In so doing we created a scalable 
verification mechanism which can deal with 
reconfiguration. 

We actually go one step further in improving the 
verification process by using synthesis. Synthesis is a 
formal form of automatic code generation. Generating code 
automatically allows us to control the shape of the code, and 
in particular, giving priority to language constructs that 
facilitates the verification process (described in previous 
sections). Moreover, our synthesis process itself generates 
code in a trustworthy manner, which can completely 
eliminate some error classes. 

Introduction to synthesis 

The aim is to have certified components. One way of 
achieving this is to verify that components are free of bugs. 
Another is to generate the components in an inherently 

trustworthy manner. We are developing the use of 
automated code generation (also known as program 
synthesis) for this. Control software is particularly 
appropriate for code generation since it can be modeled 
concisely at a high-level, while the code which implements 
it tends to be idiomatic. 

We now give a brief overview of automated code 
generation, and the AutoFilter system, which generates 
Kalman filter-based state estimation code [18]. We then 
describe the specific adaptations which have been carried 
out so that AutoFilter generates CLARAty functional layer 
components. 

A code generator takes as input a domain-specific high-
level description of a task (e.g., a set of differential 
equations) and produces optimized and documented low-
level code (e.g., C or C++) that is based on algorithms 
appropriate for the task (e.g., the extended Kalman filter).  
This automation increases developer productivity and, in 
principle, prevents the introduction of coding errors. 

AutoFilter [7] is a domain-specific program synthesis 
system that generates customized Kalman filters for state 
estimation tasks specified in a high-level notation. 
AutoFilter's specification language uses differential 
equations for the process and measurement models and 
statistical distributions to describe the noise characteristics.  
It can generate code with a range of algorithmic 
characteristics and for several target platforms.  The tool has 
been designed with reliability of the generated code in mind 
and is able to automatically certify that the code it generates 
is free from various error classes (most are programming 
error, some address functional concerns). Since 
documentation is an important part of software assurance, 
AutoFilter can also automatically generate various human-
readable documents, containing both design and safety 
related information. 

Due to the modularity of the CLARAty functional layer, we 
can gradually develop our synthesis capabilities, one 
module at a time.  In the first part of the project, therefore, 
we have concentrated on modifying AutoFilter's existing 
synthesis capabilities in order to generate a CLARAty 
estimator.  There are a number of compelling reasons for 
this. 

(1) We already have substantial expertise in synthesizing 
Kalman filters, so it will enable us to more easily gain 
experience for the synthesis of other components. 

(2) They form an integral part of not just rover software 
(along with navigators and locomotors), but all 
vehicles. 

(3) They are directly affected by hardware 
reconfiguration, in particular, sensor configurations 
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(4) There is a clear notion of model for estimators 
(namely, the sensor and system models, which are 
already part of the CLARAty framework). 

(5) There is substantial potential variability at multiple 
levels (different algorithms, different sensor models, 
mathematical approximations) so it offers scope for 
reconfiguration. 

In CLARAty, estimators are part of the functional layer. 
The estimator class offers functionality for generic 
estimators, from which the kalman_filter class is one 
specialization. 

Example: synthesis of a state estimator 

The following extensions have been carried out to the 
AutoFilter program synthesis system in order to let it 
generate code in the CLARAty framework. 

The original system synthesized code from specifications in 
a number of stages. First, the schemas generated code in the 
synt intermediate language format. This was then 
transformed into the lower-level lang, which is still an 
internal abstract representation, but depends on the chosen 
target language (e.g., C++). Finally, the lang code is pretty 
printed in the native format of the target language. 

The existing implementation, however, made a number of 
architectural assumptions which were inapplicable to the 
representation of filters in CLARAty. In particular, it 
interleaved the construction of architecture-specific code 
with the construction of mathematical entities common to 
all filters. For example, the previous system assumed that a 
filter obtained its measurements in batch form and that the 
propagate-update cycle was within a for-loop of 
predetermined size. Many of these assumptions were 
implicit and undocumented. 

The first change, therefore, was to separate these two parts 
of the synthesis process and make what is constructed 
mathematically a more explicit intermediate stage prior to 
architectural specialization. The first stage now is the 
construction of a "filter model". This is common to all 
filters and consists of certain matrices, such as the state 
transition and measurement matrices, and initial values for 
the state vector and covariance matrices. It also contains 
code for computing the residual and propagating the state. 

The second stage is the transformation of the filter model 
into a CLARAty (filter) model, which consists of a system 
model, sensor model, measurable, and controllable. This 
involves the construction of the appropriate C++ classes and 
methods (in the internal lang format). Expressions that 
involve concepts from the filter model must also be 
transformed. For example, measurement variables are 
represented as filter_model(myRover, meas) in 

the filter model, and as measurement.get_mz () in 
CLARAty. 

A very simple example of part of an input specification 
follows. The model describes a simple four wheeled rover 
where the two left where are mechanically coupled (that is, 
cannot move independently) as are the right wheels.  The 
state vector, x, estimates the left speed, right speed, and the 
yaw rate of chassis. In the equations, l is vehicle length, 
and u represents white noise. We assume that the sensors 
directly measure the state variables, so the measurement 
vector, z, just reads x, subject to noise, u.  The equations 
are given, in this case, in discrete rather than continuous 
form. 

Nominal model:

Measurement model:

disc x(0) := x(0) + u(0)
disc x(1) := x(1) + u(1)
disc x(2) := -x(0)/l + x(1)/l + u(2)

z(0,tvar) := x(0) + v(0)
z(1,tvar) := x(1) + v(1)
z(2,tvar) := x(2) + v(2)

Nominal model:

Measurement model:

disc x(0) := x(0) + u(0)
disc x(1) := x(1) + u(1)
disc x(2) := -x(0)/l + x(1)/l + u(2)

disc x(0) := x(0) + u(0)
disc x(1) := x(1) + u(1)
disc x(2) := -x(0)/l + x(1)/l + u(2)

z(0,tvar) := x(0) + v(0)
z(1,tvar) := x(1) + v(1)
z(2,tvar) := x(2) + v(2)

z(0,tvar) := x(0) + v(0)
z(1,tvar) := x(1) + v(1)
z(2,tvar) := x(2) + v(2)

 
Figure 5. Example of synthesis input specification. 

The code that is generated is quite simple in this case, since 
the filter is linear and all of the derived matrices are 
constant. For example, Figure 6 shows the system model.  
Note that some of the variables are declared elsewhere. 
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class Nominal_filter_System_Model : 
public KF_System_Model {

Vector<double> compute_transition
(const Vector<double> &state,  
const kf_measurement_t &control)

{
Vector<double> state2 = state;
state2 = get_transition_matrix () * state;
return state2;

}
Matrix<double> get_transition_matrix()
{

double tmp[] = {1 , 0 , 0 , 0 , 1 , 0 ,
-1 / 1 , 1 / 1 , 0};

Matrix<double> m(1, 3 - 1, tmp);
return m;

}
Matrix<double> get_process_noise_matrix()
{

double tmp[] = {_sigma(0) , 0 , 0 , 0 , 
_sigma(1) , 0 , 0 , 0 , 
_sigma(2)};

Matrix<double> m(1, 3 - 1, tmp);
return m;

}
public:

Nominal_filter_System_Model
(Vector<double> &sigma)

{
Vector<double> _sigma = sigma;

}
private:
Vector<double> _sigma;

};  

Figure 6. Example of synthesizes kalman filter class. 

We are currently making a number of extensions in order to 
deal with more substantial examples. For example, there is 
not yet syntax in the specification language for specifying 
the sources of measurables and controllables or their 
uncertainty (we currently assume a fixed value). A more 
interesting extension allows the use of complex expressions 
for measurements, such as deltas, integrators, and virtual 
sensors (that is, using one filter as the measurement for 
another). 

7. CONCLUSIONS 

In this paper, we have described an approach to verify 
autonomous systems. We are especially interested in 
systems based on the three traditional layers (planning, 
execution, and functional layer) and that are subject to 
reconfiguration (either because of changes in the physical 
system they control or because of a need to take advantage 
of technology evolution). 

Our verification approach is highly modular (hence, the 
need for compositional verification) and exploits the 
dichotomy found in autonomous systems (these systems 
consist of models and reasoning engines). The first result is 

that we target a variety of possible fault classes, from 
traditional coding errors (run-time errors and system-level 
errors) to functional errors (such as the violation of flight 
rules). We also rely on a testing framework which is 
enhanced by the use of advanced formal verification 
techniques such as static analysis, model checking, and 
theorem proving. The second result is that we use synthesis 
as a fast and robust implementation tool (for code and 
models) and as a means to augment the precision of our 
verification results (by favoring constructs amenable to 
verification). 

This paper describes our overall approach and it 
demonstrates the use of advance verification techniques 
(static analysis and compositional verification) and 
synthesis. We illustrate the use of these three techniques 
with their application to different parts of our autonomy 
architecture. 
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